Теории вселенной


Взгляд на чрезвычайно отдалённую часть Вселенной открывает нам галактики, движущиеся от нас с огромными скоростями. На таких расстояниях галактик видно больше, они меньше по размеру, не такие развитые и удаляются с большими красными смещениями, чем те, что расположены недалеко
Когда вы смотрите на удалённую Вселенную, вы повсюду видите галактики – во всех направлениях, на все миллионы и миллиарды световых лет. Человечеству доступны для наблюдения примерно два триллиона галактик, а общая сумма всего, что есть во Вселенной, гораздо больше и невероятнее, чем большинство из нас может себе представить. Один из наиболее сбивающих с толку фактов состоит в том, что все видимые нами галактики в среднем подчиняются одному правилу: чем дальше они от нас, тем быстрее, по-видимому, они движутся в сторону от нас. Это открытие, сделанное Эдвином Хабблом со своими помощниками в 1920-х, привело нас к картине расширяющейся Вселенной. Но что означает, что Вселенная расширяется? Наука знает это, а теперь будете знать и вы!

Чем дальше мы смотрим, тем более древнюю и неразвитую Вселенную видим. Но это только если Общая теория относительности применима ко Вселенной и управляет её расширением.
1) Во что расширяется Вселенная? Это один из вопросов, звучащих разумно, поскольку всё остальное, что может расширяться, состоит из материи и существует в рамках пространства и времени Вселенной. Но сама Вселенная – это и есть пространство и время, и оно содержит всю имеющуюся материю и энергию. Говоря о «расширении Вселенной» мы имеем в виду, что расширяется пространство, и мы видим, что отдельные галактики и их скопления разлетаются друг от друга. Лучшая из визуализаций этого процесса – это тесто с изюминками, поднимающееся в результате выпекания в печи.

Модель «хлеба с изюмом» расширения Вселенной, в которой относительные расстояния увеличиваются при расширении пространства (теста).
Тесто – ткань пространства, изюминки – связанные структуры (галактики или группы/скопления галактик), и с точки зрения любой изюминки все остальные двигаются от неё, и чем дальше изюминка, тем быстрее она убегает. Только в случае Вселенной нет никакой печки и воздуха снаружи теста; есть только тесто (пространство) и изюминки (материя).

Красное смещение вызывается не движением галактик от нас – красное смещение света, путешествующего от удалённых точек пространства к нам, происходит из-за растяжения пространства между нами и галактиками
2) Откуда нам знать, что расширяется ткань пространства – может, это просто галактики движутся с разными скоростями? Если объекты движутся от вас по всем направлениям, то, возможно, пространство между вами и ими расширяется; но это лишь одна из возможностей. Также звучит разумным, что вы могли оказаться в центре взрыва, и многие объекты просто оказались дальше от вас и двигаются быстрее сегодня, поскольку приобрели больше энергии во время взрыва. Если бы это было так, то выделялись бы два свидетельства этого:

  1. На больших расстояниях галактик с высокими скоростями было бы меньше, поскольку они бы разлетались в стороны в пространстве с течением времени.
  2. Соотношение красного смещения и дальности на больших расстояниях имело бы весьма определённую форму, отличающуюся от того случая, когда расширяется ткань пространства.


Разница между объяснением на основе простого движения (пунктир) и предсказаниями ОТО (сплошная) для расстояний в расширяющейся Вселенной. Нашим наблюдениям однозначно соответствуют предсказания ОТО.
На больших расстояниях плотность галактик оказывается выше, чем поблизости от нас. Это совпадает с картиной, в которой расширяется пространство, поскольку заглядывать вдаль – это всё равно, что заглядывать в прошлое, где расширение было не таким сильным. Мы также видим, что отношение красного смещения к расстоянию у далёких галактик совпадает с картиной расширения ткани пространства, и вовсе не совпадает со случаем, когда галактики просто движутся от нас. На этот вопрос наука даёт ответ двумя очень разными способами, и оба ответа поддерживают вариант расширяющейся Вселенной.

График видимой скорости расширения (ось y) в зависимости от расстояния (ось x) совпадает со Вселенной, быстрее расширявшейся в прошлом, но до сих пор расширяющейся сегодня. Это современная версия наблюдения, расширяющая дистанции в тысячи раз по сравнению с тем, что делал Хаббл. Отметьте, что точки не лежат на прямой, что говорит об изменении скорости расширения со временем
3) Всегда ли Вселенная расширялась с одной скоростью? Мы называем эту скорость постоянной Хаббла, но она постоянна по всему пространству, а не по всему времени. Вселенная сейчас, сегодня, расширяется медленнее, чем это было в прошлом . Когда мы говорим о скорости расширения, имеется в виду скорость на единицу расстояния: сегодня это порядка 70 км/с/Мпк (километров в секунду на мегапарсек; мегапарсек – 3 260 000 световых лет). Но скорость расширения зависит от плотности всего, что есть во Вселенной, включая и материю с излучением. С расширением Вселенной материя и излучение внутри неё становятся менее плотными, и с падением плотности материи и излучения падает и скорость расширения. Вселенная в прошлом расширялась быстрее, и замедляется со времён горячего Большого взрыва. Постоянная Хаббла названа так не очень точно; её надо бы назвать параметром Хаббла.

Варианты отдалённой судьбы Вселенной предлагают несколько возможностей, но если тёмная энергия действительно является постоянной, о чём говорят наши данные, то Вселенная будет продолжать следовать красной кривой

4) Будет ли Вселенная расширяться вечно, или она когда-нибудь остановится, или даже сожмётся обратно? Множество поколений этот вопрос был святым Граалем космологии и астрофизики, и на него можно было ответить, только определив как скорость расширения Вселенной, так и все присутствующие в ней типы и количества энергии. Теперь мы успешно измерили, сколько нормальной материи, излучения, нейтрино, тёмной материи и тёмной энергии присутствует в ней, а также скорость расширения Вселенной. На основании законов физики и прошлых событий весьма вероятным кажется то, что Вселенная будет расширяться вечно. Хотя эта вероятность не равна 100%; если что-то, к примеру, тёмная материя, будет вести себя в будущем по-другому, не так, как в прошлом или сегодня, все наши выводы придётся пересмотреть.

5) Есть ли галактики, убегающие от нас быстрее скорости света, и не запрещено ли это? С нашей точки зрения пространство между нами и любой удалённой точкой расширяется. Чем дальше что-то находится, тем быстрее оно удаляется от нас. Даже если бы скорость расширения была крохотной, достаточно далёкий объект в итоге преодолел бы порог любой конечной скорости, поскольку скорость расширения (скорость на единицу расстояния), помноженная на достаточно большое расстояние, даст вам любое значение скорости. Но ОТО этого не запрещает! Закон, запрещающий движение быстрее света, применим только к движениям объектов в пространстве, а не к расширению самого пространства. На самом деле сами галактики двигаются со скоростями порядка сотен или тысяч км/с, что гораздо меньше, чем 300 000 км/с, ограничение скорости, устанавливаемое светом. Убегание и красное смещение вызвано расширением Вселенной, а не истинным движением галактики.

Внутри наблюдаемой Вселенной (жёлтый круг) есть примерно 2 триллиона галактик. До галактик, находящихся на расстоянии большем, чем треть пути от нас до границы, никогда нельзя будет добраться из-за расширения Вселенной, поэтому объём, открытый для изучения человеком, составляет всего 3% от наблюдаемой Вселенной
Расширение Вселенной – обязательное следствие наличия материи и энергии, заполняющей пространство-время, подчиняющееся ОТО. Пока есть материя, есть гравитационное притяжение, поэтому либо гравитация выигрывает и всё сжимается, либо гравитация проигрывает и выигрывает расширение. Нет никакого центра расширения, нет ничего за пределами пространства, куда расширялась бы Вселенная; расширение испытывает сама ткань Вселенной, везде и постоянно. И что самое обидное, даже если бы мы сегодня покинули Землю и отправились бы в путь со скоростью света, нам оказались бы доступными лишь 3% галактик из всей наблюдаемой Вселенной; 97% из них уже за пределами наших возможностей. Вселенная может быть сложным местом, но, по крайней мере, теперь вы знаете ответы на пять из наиболее часто запутывающих всех вопросов!

Научные открытия не способны появляться сами по себе – они всегда базируются на предположениях, догадках, изысканиях, исследованиях, экспериментах, гипотезах и интересах, как отдельного ученого, так и научного сообщества.
Научное познание, являясь элементом технического развития, всегда подчинено социальным и технологическим запросам того времени, в котором оно развивается. Именно по этой причине, чтобы осознать, каким образом работает невероятный механизм нашей Вселенной, нужно заглянуть за пределы одной человеческой эпохи, анализируя научное развитие в историческом контексте.
Авторы документального сериала «BBC. Начало и конец Вселенной», который вы можете посмотреть на сайте в режиме онлайн, понимая это, предлагают зрителю окунуться в исторический экскурс, где его авторы, заглядывая в прошлое, показывают развитие научного знания. А начинается все с теории относительности Эйнштейна, который предложил поистине новую и революционную парадигму, заменяющую доминирующие взгляды, основанные на описаниях Ньютона.
Почему так произошло и к чему это нас привело? На эти и многие другие вопросы вы получите ответы во время просмотра серий документального проекта «BBC. Начало и конец Вселенной».

До того как появилась Земля, во Вселенной было большое облако газа и пыли. До этого произошел Большой Взрыв и наша Вселенная появилась из точки с бесконечно большой плотностью. А до этого… А что было до этого, это как раз тот самый вопрос, который заставляет физиков нервно закатывать глаза. Им остается только предполагать, что было до Большого Взрыва. Вот их теории.

Большой отскок

Эта теория предполагает рождение нашей Вселенной как результат гибели какой-то другой. Это теория цикличности, согласно которой наш мир живет в бесконечном цикле расширения и коллапса, а это означает, что мы находимся на пути к следующему коллапсу. Когда придет время в результате невообразимого события наша Вселенная погибнет, пространство вновь сожмется в точку и произойдет новый Большой Взрыв.

Спящая вселенная

Есть мнение, что никакой цикличности не существует. Так утверждают приверженцы теории о спящей вселенной. Они считают, что раньше наш мир был плоским пространством, стабильным во всех отношениях, на которое однажды подействовала некая неизвестная внешняя сила и вывела его из состояния равновесия. Результатом стала наша Вселенная. Другими словами, Вселенная была как карточный домик, на который подул ветер.

BigBang.jpg

Гипотеза об инфляции

Сначала была бесконечно плотная и горячая точка, потом она взорвалась. Да кто в такое поверит? Точно не сторонники гипотезы об инфляции. Им не нравятся гипотетические точки, им по душе поля. По их версии, вначале было инфлатонное поле, пронизывающее пространство. Потом всплеск энергии захватил участок поля и стал причиной Большого Взрыва, который создал там некий пузырь, в котором мы с вами сейчас и живем.

Мультивселенная

Эта теория является ответвлением предыдущей и ее поддерживают многие. Считается что событие, послужившее причиной образования нашей Вселенной, также дало жизнь некоторому количеству других вселенных, и наш пузырь окружен бесконечным количеством таких же. Правда эта теория сразу ставит своих последователей перед вопросом — как попасть к соседям?

космология, астрономия, большой взрыв Классический сегодня ответ на вопрос «откуда взялась Вселенная?» – в результате Большого взрыва 14 миллиард лет назад. Иллюстрация NASA

Прошедший ХХ век принес человечеству существенные открытия в области космологии и астрофизики – прежде всего в изучении черных дыр, времени, квантовой теории и Большого взрыва. За 100 лет представление о месте человека во Вселенной изменилось кардинально. Нелегко было XVII веку смириться с подчиненным положением Земли по отношению к Солнцу, а следующим векам принять периферийность Солнечной системы и даже галактики Млечный Путь, а человеку осознать себя пылинкой во Вселенной. Но откуда взялась Вселенная? Кажется, что идея, будто все это получилось из ничего, противоречит логике и здравому смыслу.

Большой взрыв покажут по телевизору

Если мы оставим в стороне гипотезу Бога, то какие варианты ответа на загадку существования мира нам остаются? Возможно, когда-нибудь наука объяснит не только то, как мир устроен, но и почему он устроен именно так. По крайней мере именно на это надеется, например, английский биолог-эволюционист Ричард Докинз. Он ищет ответ в теоретической физике, полагаясь на ускоренное, инфляционное расширение в первые доли секунды после Большого взрыва и на принцип космического отбора вселенных, похожего на принцип естественного отбора Дарвина.

Пока считалось, что Вселенная вечна, ее существование не слишком заботило ученых. Альберт Эйнштейн в своих гипотезах просто принял, что Вселенная вечна, и даже подправил уравнения теории относительности соответствующим образом. Однако с принятием концепции Большого взрыва все изменилось. Эксперименты показывают, что мы живем в расширяющихся и охлаждающихся остатках космического «комка», который взорвался около 14 млрд лет назад. Что могло вызвать этот первоначальный взрыв? И что ему предшествовало – и предшествовало ли что-нибудь вообще? Эти вопросы определенно входят в компетенцию науки. Но любая попытка науки на них ответить натыкается на кажущееся непреодолимым препятствие, известное как «сингулярность».

Предположение, что Вселенная расширяется (вопреки прежней статичной модели), подтверждено в 1929 году астрономом Эдвином Хабблом на основании наблюдений за спектром звезд. Окончательным подтверждением инфляции Вселенной стало обнаруженное в 1965 году реликтовое излучение, которое осталось со времен Большого взрыва. Любопытно, что поначалу ученые подумали, что причина постоянного шипения в микроволновом диапазоне – деятельность голубей. Если включить телевизор и настроиться между станциями на пустой канал, то примерно 10% черно-белых крапинок на экране вызывается фотонами, которые остались с момента рождения Вселенной. Наглядней доказательство реальности Большого взрыва невозможно придумать – вы можете увидеть остывающие остатки Большого взрыва в собственном телевизоре.

Если проследить историю расширяющейся Вселенной вспять, Вселенная будет уменьшаться, пока в момент Большого взрыва не обратится в сингулярность. Здесь теория Эйнштейна прерывается и не может предсказать начало Вселенной и начало времени. В этой точке действуют исключительно законы квантовой механики: размытые по пространству волны-частицы движутся всеми возможными путями, и Вселенная может иметь бесконечное множество предысторий. Концептуальный тупик в точке Большого взрыва беспокоил космологов, и они стали искать сценарии, позволяющие избежать первоначальной сингулярности.

Новая инфляционная космология

В 1970 году английские физики-теоретики Стивен Хокинг и Роджер Пенроуз показали, что эти попытки не могут увенчаться успехом. Хокинг и Пенроуз начали со вполне логичного предположения о том, что гравитация всегда притягивает, и приняли плотность материи во Вселенной примерно равной измеренной экспериментально. На основе этих двух допущений они доказали, что в начале Вселенной все-таки должна быть сингулярность.

Означает ли это, что тайна происхождения Вселенной останется навсегда неразгаданной? Не совсем так, скорее расчеты Хокинга и Пенроуза показывают, что Большой взрыв не может быть полностью понят классической космологией вроде теории относительности Эйнштейна, потребуются и другие теории.

По словам Хокинга, одно из следствий теории квантовой механики заключается в том, что события, произошедшие в прошлом, не происходили каким-то определенным образом. Вместо этого они могли происходить всеми возможными способами. Это связано с вероятностным характером вещества и энергии согласно квантовой механике: до тех пор, пока не найдется сторонний наблюдатель, материя будет находиться в неопределенности. Стивен Хокинг пишет: «Независимо от того, какие воспоминания вы храните о прошлом в настоящее время, прошлое, как и будущее, неопределенно и существует в виде спектра возможностей».

В начале ХХ века считалось, что наша Вселенная состоит только из галактики Млечный Путь, которая плывет сама по себе в бесконечном пространстве. С тех пор ученые установили, что Млечный Путь – всего лишь одна из сотен миллиардов галактик, и это только в видимой нам части Вселенной. В настоящее время считается, что сам Большой взрыв лучше всего объясняет теория, названная «новая инфляционная космология».

Согласно этой теории, взрывы, создающие вселенные, подобно Большому взрыву, случаются довольно часто. Инфляционная космология полагает, что наша Вселенная (которая возникла 14 млрд лет назад) появилась из пространства-времени уже существовавшей Вселенной и не является единственной физической реальностью, а представляет собой лишь невообразимо крохотную часть Мультивселенной (Мультиверса).

Хотя каждый из миров внутри Мультиверсума имеет начало во времени, вся самовоспроизводящаяся структура в целом может быть вечной – таким образом, мы вновь будто возвращаемся к концепции статичной Вселенной, которая казалась навсегда отброшенной с открытием Большого взрыва.

Тем не менее остается вопрос: почему же существует вся эта материя и энергия? Почему пространство-время нашей Вселенной обладает определенной геометрической формой и имеет конечный возраст? Почему оно насыщено разнообразными физическими полями, частицами и силами? И почему эти поля, частицы и силы подчиняются определенному набору законов, причем довольно запутанному? Разве не проще было бы, если бы не было вообще ничего?

Для бесконечного во времени мира (неважно, соответствует ли он инфляционной или другой теории) не существует необъяснимого «момента творения», в нем нет места «первопричине», нет произвольных начальных условий. Поэтому кажется, что вечный мир удовлетворяет принципу достаточной причины: его состояние в любой момент можно объяснить его состоянием в предыдущий момент.

Так, если в момент Большого взрыва не было никакого перехода от Ничто к Нечто, то нет надобности искать причину, божественную или какую-то иную, которая вызвала к жизни Вселенную? И также нет необходимости ломать голову над поставленным нами вопросом: откуда взялись материя и энергия во Вселенной? Внезапного и фантастического нарушения закона сохранения энергии-массы во время Большого взрыва не было. А Вселенная всегда обладала одинаковой энергией-массой, от нулевого момента и до настоящего времени.

Сумма альтернативных историй

В классической физике, располагая полными данными о настоящем, мы можем легко восстановить картину прошлого. Это соответствует интуитивному убеждению в существовании лишь единственно определенного прошлого. Но квантовая физика утверждает, что при самом детальном наблюдении настоящего ненаблюдаемое прошлое неопределенно и представляет собой сумму предысторий.

В середине 1940-х годов это коренное отличие квантовой механики от ньютоновской сформулировал физик Ричард Фейнман: в ньютоновской механике движущиеся предметы проходят через фильтр с двумя отверстиями строго определенным путем. Но если на фильтр направить пучок частиц (или даже одну частицу), они/она пройдут через эти отверстия всеми мыслимыми путями: и прямым, и через Альфу Центавра, и через соседний гастроном… Вместо классического детерминизма современная физика здесь имеет дело со случайностью и вероятностью.

Но эта фундаментальная случайность, так беспокоившая Эйнштейна, все же поддается математическому описанию. Фейнман ввел понятие «сумма предысторий» – все возможные пути частиц, по итогам которых мы наблюдаем результаты эксперимента. Мы не можем точно предсказывать не только будущее, но и прошлое – как именно частица попала в конечную точку, но можем рассматривать совокупность всех возможных путей. В итоге основным методом квантовой физики стала «сумма альтернативных историй», то есть учет всех путей с расчетом вероятности каждого.

Поскольку ненаблюдаемое прошлое неопределенно, а наблюдение меняет поведение системы, то выводимое из наблюдений прошлое еще и изменено по сравнению с ненаблюдаемым: наблюдая за системой, мы меняем не только ее настоящее, но и прошлое.

Как возможно сочетание классической физики, имеющей дело с макрообъектами в пространстве-времени, с неопределенностью и непредсказуемостью квантовой механики? Вероятно, происходит примерно то же, что и в специальной теории относительности: теория начинает действовать в «экстремальных обстоятельствах». Такими экстремальными обстоятельствами для движущегося объекта становится приближение к скорости света: скорость начинает влиять на массу, а время замедляется и в конечном счете останавливается.

Квантовая космология

В каком экстремуме квантовые законы и, как следствие, исчезновение измерения времени могут проявиться на уровне Вселенной? Очевидно, когда Вселенная сравнима размерами с атомным ядром. Именно это подразумевает теория Большого взрыва: все начинается с сингулярности – точки, в которой температура, плотность и искривление Вселенной были бесконечны. Из этой точки Вселенная начинает расширяться, и расширение в соответствии с инфляционной моделью продолжается до сих пор. Общая теория относительности Эйнштейна утверждает, что форма пространства-времени определяется распределением энергии и материи. И когда энергия и материя бесконечно сжаты, то и само пространство-время тоже сжато – и оно просто исчезает.

Как именно, можно понять, если учесть, что через неизмеримо малые доли секунды после рождения вся наблюдаемая Вселенная была не больше атома. В таких масштабах классическая физика неприменима: в микромире правят законы квантовой теории. Поэтому космологи стали задаваться вопросом: а что, если квантовую теорию, которая использовалась только для описания субатомных явлений, применить ко всей Вселенной в целом? Так родилась квантовая космология, названная физиком Джоном Гриббином «наиболее значительным шагом вперед в науке со времен Исаака Ньютона».

Квантовая космология предлагает способ обойти проблему сингулярности. Классические космологи полагали, что сингулярность, притаившаяся за Большим взрывом, это что-то вроде точки с нулевым объемом. Однако квантовая теория запрещает столь точно определенное состояние, утверждая, что на самом фундаментальном уровне природа обладает неизбежной размытостью, поэтому невозможно указать точный момент возникновения Вселенной, ее начальное время.

То, что квантовая теория разрешает, еще более интересно, чем то, что она запрещает. А разрешает она спонтанное возникновение частиц из вакуума. Такой способ создания Нечто из Ничто дал квантовым космологам плодотворную идею: что, если сама Вселенная, по законам квантовой механики, возникла из случайной флуктуации? Тогда причина того, что существует Нечто, а не Ничто, состоит в неустойчивости вакуума.

Утверждение физиков о том, что вакуум неустойчив, подчас подвергается нападкам философов. Но физический вакуум и полная пустота – названия разных объектов. Однако о пустоте можно думать не только как об объекте, но и как об описании определенного состояния. Для физика «пустота» описывает такое состояние, когда нет частиц и все поля математически равны нулю. Возможно ли такое состояние в действительности? То есть согласуется ли оно логически с наблюдаемыми физическими реалиями? Возможно ли создать в наполненной Вселенной полную пустоту?

Мир неустойчивой пустоты

Один из наиболее глубоких принципов, лежащих в самой основе нашего квантового понимания природы, это принцип неопределенности Гейзенберга. Он утверждает, что определенные пары свойств связаны друг с другом таким образом, что не могут быть точно измерены вместе. Одна такая пара переменных – координаты и импульс частицы: чем точнее вы установили положение частицы, тем менее точно вам известно значение ее импульса, и наоборот. Другая пара сопряженных переменных – время и энергия: чем точнее вам известен промежуток времени, в течение которого произошло какое-то событие, тем менее точно вы знаете об энергии, связанной с этим событием, и наоборот.

Квантовая неопределенность запрещает точное определение значений поля и скорости изменения этого значения. Пустота, или вакуум, – это состояние, в котором все значения полей постоянно равны нулю, однако принцип неопределенности Гейзенберга говорит, что если мы точно знаем значение поля, то скорость его изменения совершенно случайна, то есть не может быть равна нулю. Таким образом, математическое описание неизменной пустоты несовместимо с квантовой механикой. Точнее, пустота неустойчива, или же чистой пустоты попросту не существует.

Идея, что Вселенная, содержащая сотни миллиардов галактик, могла появиться из пустоты, выглядит невероятной. Как показал Эйнштейн, любая масса представляет собой застывшую энергию. Однако огромному количеству положительной энергии, запертой в звездах и галактиках, должна противостоять отрицательная энергия гравитационного притяжения между ними. В «закрытой» Вселенной (той, которая со временем снова сожмется) положительная и отрицательная энергии должны точно уравновешивать друг друга. Другими словами, общая энергия такой Вселенной равна нулю.

Возможность создания Вселенной из нулевой энергии поражает воображение. С точки зрения квантовой механики Вселенная с нулевой энергией представляет собой интересный случай.

Допустим, что полная энергия Вселенной точно равна нулю. Тогда благодаря взаимосвязи в неопределенности между энергией и временем (как утверждает принцип Гейзенберга) неопределенность во времени становится бесконечной. Другими словами, как только такая Вселенная возникнет из пустоты, то сможет существовать вечно. Что же касается причины, по которой Вселенная возникла, то это просто квантовая вероятность.

Стивен Хокинг в книге «Великий замысел» пишет: «Если полная энергия Вселенной должна всегда оставаться нулевой и необходимо затратить энергию, чтобы создать тело, как может вся Вселенная быть создана из ничего? Вот почему должен существовать такой закон, как гравитация. Так как гравитация притягивает, то энергия гравитации является отрицательной. Необходимо произвести работу, чтобы разделить гравитационно связанную систему, такую как Земля и Луна. Эта отрицательная энергия может быть сбалансирована положительной энергией, необходимой чтобы создать материю, но все не так просто. Отрицательная гравитационная энергия Земли, к примеру, меньше, чем положительная энергия миллиардов частиц, из которых она состоит. Тело, такое как звезда, будет иметь больше отрицательной гравитационной энергии, и чем меньше она (частицы, из которых она состоит, находятся ближе друг к другу), тем больше будет ее отрицательная гравитационная энергия. Но прежде чем отрицательной гравитационной энергии может стать больше положительной энергии вещества, звезда сколлапсирует в черную дыру, и черная дыра будет иметь положительную энергию. Вот почему пустое пространство стабильно. Тела, такие как звезды или черные дыры, не могут так просто появляться из ничего. Но целая Вселенная может!»

С выводами Стивена Хокинга согласна и квантовая механика. Американский ученый русского происхождения Алекс Виленкин в книге «Мир многих миров» показал, что из начального состояния пустоты может спонтанно появиться крохотный кусочек наполненного энергией вакуума. Под действием отрицательного давления этот кусочек энергетического вакуума испытает безудержное расширение. Через пару микросекунд он достигнет космических размеров, испустив поток света и материи, создав Большой взрыв.

Таким образом, по мнению Виленкина, переход от Пустоты к Бытию происходит в два этапа. На первом крохотный кусочек вакуума появляется из вакуума. На втором он раздувается в наполненную материей предшественницу той Вселенной, которую мы сейчас видим вокруг.

На данный момент принципы квантовой механики, управляющие первым этапом, являются самыми надежными принципами в науке. Что касается теории инфляции, которая описывает второй этап, то с момента своего создания в начале 1980-х годов она успешно подтверждена не только теоретически, но и эмпирически – в частности распределением реликтового излучения, оставшегося после Большого взрыва.

Что же происходит в момент Большого взрыва со временем? Общая теория относительности объединяется с квантовой теорией: искривление времени-пространства настолько велико, что все четыре измерения ведут себя одинаково. Иными словами, времени как особого параметра нет. А если времени нет, то нет и возможности говорить о начале Вселенной во времени, что устраняет проблему творения из Ничего.

Таким образом, сингулярность в начале Вселенной не событие во времени, а скорее временная граница или край. До нее времени не было. Поэтому не было и времени, когда преобладало Ничто. И не было никакого «возникновения» – по крайней мере во времени. Вселенная имеет конечный возраст, хоть и существовала всегда, если под «всегда» подразумевать все моменты времени. Вековой парадокс разрешается.