Вселенная и бесконечность

Рисунок ВселеннойРисунок ВселеннойЗнаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы? Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос.

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры?

Граница безграничного

Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?

Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то».

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.

Расширяя границы

ВселеннаяВселенная

Инфографика «Вселенная» Посмотреть в большом разрешении

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной.

Естественно, ещё в Древней Греции существовали те, кто считал что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции.

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере. В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм».

Множество Солнц

Вега, снимок ESOВега, снимок ESO

Вега, снимок ESO

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс α Лиры. Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во Вселенной.

Множество Млечных Путей

Млечный путьМлечный путь

Млечный путь

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью цефеид. Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволила составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами (войдами) и составляют крупномасштабную структуру, известной на данный момент, Вселенной.

Очевидная бесконечность

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе.

Эволюция ВселеннойЭволюция Вселенной

Эволюция Вселенной

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты.

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину».

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону, Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

На поверхности гиперсферы

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.

Будущее ВселеннойБудущее Вселенной

Будущее Вселенной

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.

Расширяющаяся Вселенная

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным. В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, что Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную.

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, зависимый от постоянной Хаббла, характеризующий скорость её расширения.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию Большого взрыва. Открытие в 1965 году реликтового излучения подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Из чего состоит ВселеннаяИз чего состоит Вселенная

Из чего состоит Вселенная

Наконец, в 1998 году в ходе исследования расстояния до сверхновых типа Ia было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия тёмной энергии – гипотетическое поле, содержащее большую часть массы Вселенной.

Современное представление о размере наблюдаемой Вселенной

Современная модель Вселенной также называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Эволюция ВселеннойЭволюция Вселенной

Эволюция Вселенной

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 м/c). Получается, наблюдатель видит не просто объект, а его прошлое. Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой она была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Другую картину мы имеем с современной моделью Вселенной. Согласно ей Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

За горизонтом

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос о том, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Истинные границы

Krasnoe smeshhenie - Размер Вселенной

Имеет ли Вселенная истинные, не наблюдаемые границы, до сих пор остаётся предметом псевдонаучных догадок. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна – а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной с её закрытыми, открытыми, параллельными Вселенными, червоточинами. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

Но если включить холодный реализм или просто отстраниться от всех этих гипотез, то можно предположить, что наша Вселенная является бесконечным однородным вместилищем всех звёзд и галактик. Причем, в любой очень далёкой точке, будь она в миллиардах гигапарсек от нас, всё условия будут точно такими же. В этой точке будут точно такими же горизонт частиц и сфера Хаббла с таким же реликтовым излучением у их кромки. Вокруг будут такие же звёзды и галактики. Что интересно, это не противоречит расширению Вселенной. Ведь расширяется не просто Вселенная, а само её пространство. То, что в момент большого взрыва Вселенная возникла из одной точки говорит только о том, что бесконечно мелкие (практически нулевые) размеры, что были тогда, сейчас превратились в невообразимо большие. В дальнейшем будем пользоваться именно этой гипотезой для того, чтобы осознать масштабы наблюдаемой Вселенной.

Наглядное представление

В различных источниках приводятся всевозможные наглядные модели, позволяющие людям осознать масштабы Вселенной. Однако нам мало осознать, насколько велик космос. Важно представлять, каким образом проявляются такие понятия, как горизонт Хаббла и горизонт частиц на самом деле. Для этого давайте поэтапно вообразим свою модель.

Забудем о том, что современная наука не знает о «заграничной» области Вселенной. Отбросив версии о мультивселенных, фрактальной Вселенной и прочих её «разновидностях», представим, что она просто бесконечна. Как отмечалось ранее, это не противоречит расширению её пространства. Разумеется, учтём то, что сфера Хаббла и сфера частиц соответственно равны 13,75 и 45,7 млрд световых лет.

Масштабы Вселенной

Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир!
Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область облака Оорта – Луне, область границы воздействия Солнца – Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.

Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Он чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактического пространства. В двадцати сантиметрах от него расположится такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб. Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровый диаметр. Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Глава 18

Бесконечное пространство или бесконечное время?

Итак, принимая реальность времени, можно объяснить нетривиальность устройства Вселенной. Но как долго она сможет оставаться сложной и структурированной? Может ли неравновесное состояние сохраняться бесконечно? Может быть, мы живем в «пузыре сложности” в равновесной Вселенной?

Это подводит нас к самым скользким темам в современной космологии: бесконечности пространства и времени. Нет понятия романтичнее бесконечности, но в науке эта концепция приводит к путанице. Представьте, что Вселенная бесконечна в пространстве, а одни и те же законы действуют повсеместно, но начальные условия выбраны случайно. Такова Вселенная Больцмана. Почти все в бесконечной Вселенной находится в термодинамическом равновесии. Если что-то интересное и случается, то лишь вследствие флуктуаций. Эти флуктуации возникают где-то во Вселенной, и если существует бесконечно много «где-то”, то каждая флуктуация, какой бы маловероятной она ни была, происходит бесконечное число раз.

Поэтому наша часть наблюдаемой Вселенной может быть просто статистической флуктуацией. Если Вселенная бесконечна, а протяженность нашей наблюдаемой Вселенной составляет около 93 миллиардов световых лет, то такая часть будет бесконечно повторяться в бесконечном пространстве. Так что если Вселенная представляет собой модель Больцмана, мы существуем бесконечное число раз.

Это нарушает принцип Лейбница: нет и не может быть двух идентичных мест во Вселенной. Но не только его. Представьте, что сегодняшний день мог оказаться совершенно иным. Я мог бы не родиться. Вы женились бы на своей первой подружке. Некто, не вняв совету друзей, сел нетрезвым за руль и сбил насмерть ребенка. Ваш кузен родился в другой, неблагополучной, семье и совершил в итоге массовое убийство. Разумные динозавры эволюционировали, решили проблему климатических изменений, и млекопитающие не взяли верх над пресмыкающимися. Все это могло случиться и изменить нынешнюю конфигурацию Вселенной. Каждая такая конфигурация – возможная конфигурация атомов. Поэтому в бесконечном пространстве каждая из них возникает бесконечное число раз.

Ужасающая перспектива! Встает, например, вопрос: почему я должен заботиться о последствиях своих решений, если все другие решения уже приняты другими экземплярами меня в других областях бесконечной Вселенной? Я могу воспитать своего ребенка в этом мире, но должен ли я заботиться о других детях, страдающих из-за других меня?

Кроме этих этических вопросов есть и касающиеся полезности науки. Если случается все, что может случиться, то области, требующие объяснений, значительно сокращаются. Принцип достаточного основания требует наличия рациональной причины в каждом случае, когда во Вселенной реализуется один сценарий, а не другой. Но если во Вселенной уже все сценарии реализованы, объяснять ничего не надо. Конечно, наука сможет дать нам понимание локальных условий, но и это бесперспективно, потому что истинный закон будет гласить: все, что может произойти, происходит бесконечное число раз, прямо сейчас. Это своего рода reductio ad absurdum ньютоновой парадигмы, примененной к космологии, – еще один пример космологической ошибки. Я называю это бесконечной трагедией Больцмана.

Одна из ее причин в том, что предсказательная сила физики значительно снижается: значение понятия вероятности уже не то, что вы думаете. Предположим, вы проводите эксперимент, для которого квантовая механика предсказывает исход А в 99 % случаев, Б – в 1 % случаев. Эксперимент поставлен тысячу раз. Примерно в 990 случаев можно ожидать результата А. Поставив на А, вы чувствовали бы себя уверенно, потому что А выпадет примерно в 99 из 100 случаев, а Б – в 1 из 100 случаев. Хороший шанс подтвердить предсказания квантовой механики! Но в бесконечной Вселенной бесконечное число копий эксперимента. Бесконечное число раз вы наблюдаете результат А, бесконечное число – Б. Так что предсказание квантовой механики о том, что один из исходов эксперимента наблюдается в 99 раз чаще другого, в бесконечной Вселенной не поддается проверке.

В квантовой космологии это называется проблемой измерения. Почитав и расспросив знатоков, я пришел к выводу, что проблема нерешаема. Я предпочитаю принять как факт: квантовая механика доказывает, что мы живем в конечной Вселенной, содержащей лишь один экземпляр меня.

Мы можем избежать трагедии бесконечной Вселенной, отрицая, что Вселенная бесконечна в пространстве. Принимая во внимание, конечно, что мы можем наблюдать ее до определенного расстояния, можно смело высказать гипотезу, что Вселенная конечна, но неограниченна, как полагал Эйнштейн. Следовательно, Вселенная имеет топологически замкнутую поверхность в виде сферы или тора.

Это не противоречит наблюдениям. Какая топология истинна, зависит от средней кривизны пространства. Если кривизна положительна (случай сферы), существует лишь одна возможность – трехмерный аналог поверхности сферы в двумерной топологии. Если средняя кривизна пространства нулевая (случай плоскости), то для конечной Вселенной есть лишь одна возможность: трехмерный аналог поверхности тора (пончика) в двумерной топологии. Если кривизна отрицательна (случай седла), для ее топологии существует бесконечный ряд возможностей. (Они слишком сложны, чтобы их описывать здесь.) Их каталогизация – триумф математики конца XX века.

Предложение Эйнштейна – это гипотеза, которая должна быть подтверждена. Если Вселенная замкнута и достаточно мала, свет должен обогнуть ее несколько раз, и мы должны увидеть несколько изображений одних и тех же далеких галактик. Это до сих пор не обнаружено. Есть, однако, веские причины считать, что космологическая теория моделируется в пространстве-времени, пространство которого замкнуто. Если Вселенная не замкнута, она бесконечна. Это противоречит интуиции и означает, что в космосе есть граница. Она бесконечно далеко, но, тем не менее, информация не может ее преодолеть. Следовательно, пространственно бесконечная Вселенная не может считаться самодостаточной системой и должна считаться частью большей системы, которая включает любую информацию, приходящую от границы.

Если бы границы находились на конечном расстоянии от нас, вы могли бы представить, что вне видимой Вселенной есть еще пространство. Информация о границе может быть передана через то, что поступает из мира за пределами этой границы.

Бесконечно удаленная граница не позволяет представить мир за ней. Мы просто должны указать, какая информация приходит, а какая исходит от нас, но выбор произволен. Не может быть дальнейших объяснений. Следовательно, ничто не может быть объяснено в рамках любой модели Вселенной с бесконечно удаленными границами. Принцип замкнутости объяснений нарушается, и с ним нарушается принцип достаточного основания.

Здесь есть технические тонкости. Но этот аргумент решающий, хотя его, насколько я могу судить, и игнорируют космологи, считающие, что Вселенная пространственно бесконечна. Я не вижу иного выхода кроме этого: любая модель Вселенной должна быть пространственно замкнутой и без границ. Нет ничего бесконечно далекого, как нет и бесконечного пространства.

Теперь поговорим о бесконечности времени.

Литература по космологии полна дум о будущем. Если Вселенная похожа скорее на модель Лейбница, чем Больцмана, то, может быть, время ее существования конечно? Возможно, в долгосрочной перспективе умрем не только мы, но и Вселенная? Предположение о том, что она конечна в пространстве, избавляет нас от парадоксов, присущих Вселенной Больцмана. Однако не от всех. Пространственно конечная и закрытая Вселенная может жить бесконечно долго, и если она не сожмется, то будет расширяться вечно. Есть бесконечно много времени для достижения теплового равновесия. Если так, не важно, сколько времени это займет. Все равно останется время для появления флуктуаций и создания невероятных структур. Таким образом, мы можем утверждать, что все, что может произойти, произойдет бесконечное число раз. Это снова приводит к парадоксу больцмановского мозга. Если должны выполняться принципы достаточного основания и тождества неразличимых, Вселенная должна избежать такого парадоксального конца.

В научной литературе предпринимались попытки рассуждений о далеком будущем Вселенной. Но чтобы рассуждать о далеком будущем, вы должны сделать некоторые существенные предположения. Одно из них – что законы природы не должны изменяться, поскольку если бы они менялись, мы оказались бы неспособны предсказать что-либо. И неоткрытых явлений, которые могут изменить ход истории Вселенной, не должно быть. Например, могут существовать силы настолько слабые, что мы до сих пор их не обнаружили, но, тем не менее, они вступают в игру на больших расстояниях и больших временных интервалах, превышающих нынешний возраст Вселенной. Это возможно. Но такой сценарий сводит на нет любое предсказание, сделанное исходя из имеющихся знаний. Не должно быть сюрпризов вроде космических «пузырей”, идущих на нас со скоростью света из-за горизонта.

Итак, мы можем надежно вывести следующее.

Галактики перестанут порождать звезды. Галактики – гигантские машины для превращения водорода в звезды. И не очень эффективные: типичная спиральная галактика ежегодно производит лишь около одной звезды. Сейчас Вселенная (возраст – почти 14 миллиардов лет) в основном состоит из изначального водорода и гелия. Несмотря на то, что водорода много, из него выйдет конечное число звезд. Даже если весь водород превратится в звезды, всегда будет последняя звезда. И это верхний предел. Скорее всего, неравновесные процессы, участвующие в звездообразовании, прекратятся задолго до того, как закончится водород.

Последние звезды выгорят. У звезд ограниченный срок жизни. Массивные звезды живут несколько миллионов лет и умирают, превращаясь в сверхновые. Большинство звезд живут миллиарды лет и заканчивают как белые карлики. Наступит время, когда погаснет последняя звезда. И что тогда?

Вселенная будет заполнена материей и темной материей, излучением и темной энергией. Что произойдет во Вселенной в долгосрочной перспективе, во многом зависит от темной энергии, о котором мы знаем меньше всего. Она ассоциируется с пустым пространством. По последним данным, она составляет около 73 % всей массы-энергии Вселенной. Ее природа пока не известна, однако мы наблюдаем ее влияние на движение далеких галактик. В частности, темная энергия нужна для объяснения недавно обнаруженного ускорения всеобщего расширения. Кроме этого, мы ничего не знаем о темной энергии. Она может быть просто космологической постоянной или экзотической формой энергии с постоянной плотностью. Хотя плотность темной энергии находится примерно на одном уровне, мы не знаем, действительно ли это так – или же она меняется медленнее, чем мы регистрируем.

Варианты будущего Вселенной сильно различаются в зависимости от плотности темной энергии. Рассмотрим сначала сценарий, в котором плотность темной энергии сохраняется по мере расширения Вселенной. Если плотность постоянна, то она ведет себя как космологическая постоянная Эйнштейна. Она не уменьшается, несмотря на то, что Вселенная продолжает расширяться. Плотность остального – вся материя и все излучение – уменьшается, поскольку Вселенная расширяется и плотность энергии этих источников неуклонно снижается. Спустя несколько десятков миллиардов лет все станет незначительным, кроме плотности энергии, связанной с космологической постоянной.

Скопления галактик вследствие экспоненциального расширения расформируются настолько быстро, что вскоре они смогут видеть друг друга. Фотоны, оставив одно скопление и распространяясь со скоростью света, движутся недостаточно быстро для того, чтобы догнать другие скопления. Наблюдатели в каждом скоплении окружены горизонтом, скрывающем соседей. Каждое скопление превратится в замкнутую систему. Каждый горизонт как ящик, стенки которого отделяют подсистему от Вселенной. Поэтому методы физики «в ящике” применимы к такой подсистеме, и мы можем применять к ним методы термодинамики.

В этом месте проявляется новый эффект квантовой механики, за счет которого внутри каждого горизонта пространство заполнено газом фотонов в тепловом равновесии: своеобразный туман, образованный аналогично тому, как образуется излучение черной дыры Хокинга. Температура и плотность горизонта излучения экстремально низки, но остаются неизменными по мере расширения Вселенной. Между тем, все остальное, включая материю и реликтовое излучение, становится все менее плотным, и спустя достаточно большое время единственное, что будет наполнять Вселенную – это излучение горизонта. Вселенная должна навсегда прийти в равновесие. Будут, конечно, возникать флуктуации и их рецидивы, и время от времени то одна, то другая конфигурация Вселенной будет в точности повторяться (в том числе парадокс больцмановского мозга, который я описал в главе 16 как reductio ad absurdum ньютоновой парадигмы). Согласно этому сценарию, кажущаяся сложность нашей Вселенной – лишь короткая вспышка перед переходом к вечному равновесию.

Мы почти с уверенностью можем сказать, что мы не больцмановские мозги, поскольку тогда, наверное, мы не видели бы большую упорядоченную Вселенную. Это означает, что сценарий будущего Вселенной не соответствует действительности. Принцип достаточного основания, действуя через принцип тождества неразличимых, также его отвергает.

Самый простой способ избежать смерти Вселенной – остановить ее расширение. Это возможно, если плотность материи достаточна, чтобы вызвать сжатие. Материя гравитационно притягивает материю, и это замедляет расширение, так что если есть достаточно много материи, Вселенная сожмется до сингулярности. Или, возможно, квантовые эффекты остановят коллапс, превратив сжатие в расширение, и приведут к возникновению новой Вселенной. Но, вероятно, материи для замедления расширения окажется мало.

Следующий простейший способ избежать «тепловой смерти” реализуется в сценарии, в котором космологическая константа не является постоянной. В то время как имеются доказательства того, что темная энергия (которая для наших целей отождествляется с космологической постоянной) не менялась за время жизни нашей Вселенной, нет доказательств того, что она не будет меняться в долгосрочной перспективе. Это изменение может быть следствием более глубоких законов, которые действуют настолько медленно, что их следствия видны лишь на длительных временных масштабах, или изменение может быть просто следствием общей тенденции изменения самих законов. Действительно, принцип взаимного воздействия гласит, что космологическая константа должна находиться под влиянием Вселенной, на которую она сама решительно влияет.

Космологическая постоянная может уменьшиться до нулевого значения. Если так, то расширение Вселенной замедлится, но, скорее всего, не обратит его в сжатие. Вселенная может существовать вечно, однако быть статичной. По крайней мере, это поможет избежать парадокса больцмановского мозга.

Будет ли Вселенная без космологической постоянной вечно расширяться или коллапсирует, зависит от начальных условий. Если энергии расширения окажется достаточно для преодоления взаимного гравитационного притяжения всей материи во Вселенной, последняя не будет сжиматься. Но даже если Вселенная вечна, есть широкие возможности для перерождения, поскольку каждая черная дыра может привести к появлению зародыша Вселенной. Как отмечалось в главе 11, имеются надежные теоретические указания на то, что это должно произойти. Если так, наша Вселенная, которая еще далеко не при смерти, уже произвела миллиард миллиардов потомков. Каждая из новых Вселенных произведет потомство, и то обстоятельство, что она после этого может погибнуть, уже несущественно.

Есть возможности для возрождения, в котором участвуют не только черные дыры, но вся Вселенная. Эта гипотеза исследовалась в классе космологических моделей, называемых циклическими. Данную задачу решает один из видов циклической модели Пола Стейнхардта из Принстонского университета и Нила Турока из института «Периметр”. Предполагается, что космологическая постоянная уменьшается до нуля, а затем продолжает уменьшаться до значительных отрицательных величин. Это приводит к коллапсу Вселенной. Тем не менее Стейнхардт и Турок утверждают, что коллапс сопровождается расширением. Это может происходить благодаря эффектам квантовой гравитации, или конечная сингулярность может не быть достигнута из-за экстремальных значений темной энергии.

Теоретические указания на то, что космологическая сингулярность не будет достигнута из-за квантовых эффектов, ведущих к новому расширению Вселенной, сильнее, чем в случае сингулярности, связанной с черной дырой. В теории петлевой квантовой гравитации исследованы несколько моделей квантовых эффектов вблизи космологической сингулярности. Выяснилось, что такой отскок является универсальным феноменом. Следует, однако, оговориться, что это лишь модели и они основываются на существенных допущениях. Ключевым является предположение, что Вселенная пространственно-однородна. Мы знаем надежно, что однородные области – без гравитационных волн и черных дыр – не могут порождать новые Вселенные.

В худшем случае в сильно неоднородных областях не произойдет отскока. Они просто свернутся в сингулярность, где время остановится. Тем не менее это дает нам принцип, позволяющий определить, в каких частях Вселенной произойдет отскок и Вселенная воспроизведет себя. Если отскок может происходить лишь в более однородных областях, при рождении новых Вселенных, сразу после отскока, эти Вселенные также будут высоко однородны. Это позволяет предсказать, что ранняя Вселенная сразу после отскока в высшей степени однородна и в ней нет ни черных, ни белых дыр, нет никаких гравитационных волн (случай нашей Вселенной).

Но чтобы цикличный сценарий был научным, необходимо по крайней мере одно проверяемое предсказание, с помощью которого гипотезы могут быть протестированы. Существует по меньшей мере два сценария, связанных со спектром флуктуаций МФИ. Циклические сценарии предлагают объяснение тех флуктуаций, которые не требуют короткого периода экстремально быстрой инфляции (это нередко принимается в качестве основной причины флуктуаций). Наблюдаемый спектр флуктуаций успешно воспроизводится, но между предсказаниями циклической и инфляционной моделей есть два отличия, и эти предсказания могут быть экспериментально проверены сейчас или в ближайшем будущем. Во-первых, будут ли наблюдаться в спектре МФИ гравитационные волны? Инфляционная модель утверждает, что да, а циклические модели это отрицают. Последние предсказывают, что спектр реликтового излучения не целиком случаен, то есть что форма такого спектра будет отклоняться от формы распределения Гаусса.

Циклические модели – удачные примеры того, как постулирование фундаментального характера понятия времени (в том смысле, что время не начинается с Большого взрыва, а существовало прежде) ведет к космологии, способной делать надежные предсказания. Флуктуации МФИ также описываются в рамках теорий, предполагающих, что в ранней Вселенной скорость света была выше нынешней. Эти теории с переменной скоростью света выбирают выделенное понятие времени так, что оно нарушает принцип теории относительности. Они не так популярны, но также предлагают объяснение флуктуаций МФИ, не привлекая для этого инфляцию.

Роджер Пенроуз предложил другой сценарий: Вселенная дает начало новой Вселенной. Пенроуз принимает сценарий вечной Вселенной Больцмана с фиксированной космологической постоянной и спрашивает, что произойдет бесконечное время спустя. (Лишь Роджер мог задать такой вопрос!) Что если после того, как все элементарные частицы, обладающие массой (в том числе протоны, кварки и электроны) распадутся, останутся лишь фотоны с другими безмассовыми частицами? Если так, то переход к вечности обнаружить невозможно, поскольку фотоны, распространяющиеся со скоростью света, во времени не нуждаются. Для фотона вечность поздней Вселенной неотличима от ранней – разница лишь в температуре. Правда, эта разница огромна. Пенроуз считает, что это не имеет значения. В рамках реляционного описания фотонного газа имеют значение лишь соотношения между объектами, которые существуют в это время, так как отсутствует чувствительность к общей шкале. Поздняя Вселенная, заполненная газом холодных фотонов и других безмассовых частиц, неотличима от ранней, заполненной горячим газом тех же частиц. Согласно принципу тождества неразличимых, поздняя Вселенная – то же самое, что вновь рожденная.

Сценарий Пенроуза осуществляется лишь по окончании бесконечного периода времени и не решает парадокс больцмановского мозга. Однако он предсказывает, что в остатках Большого взрыва присутствуют следы прежней Вселенной. Хотя большая часть информация будет уничтожена в течение бесконечного времени, проведенного в состоянии теплового равновесия, один носитель информации никуда не исчезнет – гравитационное излучение. Информация, переносимая гравитационными волнами, не исчезает и в циклических моделях. Она сохраняется в момент отскока и передается новой Вселенной.

Самым мощным из сигналов, передаваемым с помощью гравитационных волн, является отпечаток столкновения больших черных дыр, которые находились в центре давно потухших галактик. Эти сигналы, как рябь на воде, расходятся по новой Вселенной. Следовательно, полагает Пенроуз, круги должны быть заметны в МФИ, структура которого была зафиксирована на раннем этапе эволюции нашей Вселенной. Это тени событий в прежней Вселенной.

Кроме того, Пенроуз предполагает наличие множества концентрических кругов, происходящих от скопления галактик, в которых произошли столкновения более одной пары галактических черных дыр. Это поразительное предсказание весьма отличается от сделанных на основе большинства космологических сценариев для МФИ.

Сейчас идет спор о том, можно или нет наблюдать в МФИ концентрические круги Пенроуза. Однако, как мы видим, космологические сценарии, в рамках которых наша Вселенная произошла от существовавшей до Большого взрыва, способны к предсказаниям, которые могут быть подтверждены или опровергнуты. Напротив, в сценариях, в которых Вселенная – это один из множества одновременно существующих миров, нет и скорее всего не будет никаких проверяемых предсказаний.

В главе 10 я утверждал: рациональное объяснение того, почему конкретные законы и начальные условия, реализованные в нашей Вселенной, требует, чтобы выбор был сделан несколько раз. В противном случае мы могли бы знать, почему именно такой выбор сделан, ведь нет причин для выбора одинаковых начальных условий и одинаковых законов природы, сделанного много раз подряд. Я рассматривал два сценария с множеством Больших взрывов – одновременный и последовательный. Лишь в последнем случае мы можем построить космологическую модель, которая ответила бы, почему выбраны именно эти законы, и при этом осталась бы научной в смысле способности к экспериментально проверяемым предсказаниям. В данной главе я вернулся к этому вопросу, и мы увидели: лишь в случае последовательного перерождения Вселенных могут быть получены предсказания, проверяемые в эксперименте.

Таким образом, когда мы работаем с временем как с фундаментальным понятием, космологическая модель становится научной, а идеи проверяемыми. Те, кто обременен метафизическими предположениями, будто цель науки – открывать вечные истины, могут думать, что, устранив время и сделав Вселенную похожей на математический объект, они придут к научной космологии. Но, оказывается, все наоборот. Чарльз С. Пирс больше века назад понял: мы можем объяснить законы природы, если они эволюционируют.

Данный текст является ознакомительным фрагментом.

Продолжение на Litres.ru

Действительно когда произносишь вслух слово бе(с/з)конечно, совсем не ясно какая согласная буква должна в нем писаться: «с» или «з». По этой причине, давайте подробно разберемся с правописанием данного слова.

Решить дилемму, между двумя согласными буквами, помогут правила русского языка. Но сначала нужно понять, в какой части слова находится сложная буква, а для этого разберем его по составу.

Разбор слова дает нам следующий результат: бе(с/з)-конеч-н-о:

Где «бес/з-» это приставка,

«-конеч-» — это корень,

«-н-» — суффикс,

«-о-» суффикс и нулевое окончание.

Следовательно, необходимо смотреть правописание приставок «без» и «бес».

И выбор зависит от той согласной буквы, которая следует сразу за приставкой. Если согласная буква звонкая, то пишем приставку «без-«, если глухая, то — «бес-«.

В нашем случае после приставки стоит согласная буква «к». Следовательно, правильно писать в этом слове приставку «бес-«.

Правильный ответ: бесконечно.

Примеры предложений:

Мне кажется этот вопрос мы обсуждаем бесконечно.

Нельзя бесконечно прощать ему ошибки, давайте один раз его накажем.